

A new technique for the direct detection of HO₂ radicals using bromide chemical ionization mass spectrometry (Br-CIMS): initial characterization

Javier Sanchez¹, David J. Tanner², Dexian Chen², Lewis G. Huey², Nga L. Ng^{1,2}

⁵ ¹School of Chemical and Biomolecular Engineering, Georgia Institute of Technology ²School of Earth and Atmospheric Sciences, Georgia Institute of Technology *Correspondence to*: N. L. Ng (Ng@chbe.gatech.edu)

Abstract

- Hydroperoxy radicals (HO_2) play an important part in tropospheric photochemistry, yet photochemical models do not capture ambient HO₂ mixing ratios consistently. This is likely due to a combination of uncharacterized chemical pathways and measurement limitations. The indirect nature of current HO₂ measurements introduces challenges in accurately measuring HO₂, therefore a direct technique would help constrain HO_x chemistry in the atmosphere. In this work we evaluate the feasibility of using chemical ionization mass spectrometry (CIMS) and propose a direct HO₂ detection scheme using bromide as a reagent ion. Ambient observations were made with a high resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS)
- 15 in Atlanta over the month of June 2015 to demonstrate the capability of this direct measurement technique. Observations displayed expected diurnal profiles, reaching daytime median values of ~7 ppt between 1 p.m. and 3 p.m. local time. The HO₂ diurnal was found to be dictated by morning-time vehicular NO_x emissions and shows a slow decrease into the evening. Measurement sensitivities of 4.95 ± 1.00 Hz/ppt per 10^6 bromide ion counts (⁷⁹Br) were observed. The relatively low baseline allowed for 3σ lower detection limits of 0.7 ppt for 1 minute integration times. Mass spectra of ambient measurements showed
- 20 the ⁷⁹BrHO₂⁻ peak was the major component of the signal at nominal mass-to-charge 112, suggesting high selectivity for HO₂ at this mass-to-charge. More importantly, this demonstrates that high resolution instrumentation is not necessary to conduct these measurements.

1. Introduction

- Hydroperoxy radicals (HO₂) play an important role in the photochemistry of the troposphere. They are primarily formed from the OH initiated oxidation of CO and other volatile organic compounds (VOCs), with contributions from ozonolysis of alkenes, nitrate radical oxidation of VOCs, and photolysis of aldehydes (e.g., HCHO) (Geyer et al., 2003;Cooke et al., 2010;Volkamer et al., 2010;Alam et al., 2013;Stone et al., 2014). HO₂ is a reservoir species for OH, which is the primary daytime oxidant, and facilitates the photochemical production of ozone via reaction with NO. Additionally, the relative abundance of HO₂ to NO_x plays a critical role in the fate of peroxy radicals (RO₂) and the production of low-volatility products
- 30 in secondary organic aerosol (SOA) formation (Ziemann and Atkinson, 2012; Orlando and Tyndall, 2012). For instance, reactions of HO₂ with RO₂ serve as the main source of atmospheric organic hydroperoxides, which are important constituents of SOA (Docherty et al., 2005).

Because HO₂ are short lived ($\tau \le 1$ min) (Heard and Pilling, 2003), measurements are useful in evaluating model photochemical schemes with the exclusion of confounding phenomena, such as atmospheric transport. However, accurate

measurements have proven difficult due to the naturally low abundance of HO₂. HO₂ also possess weak spectral lines, which has posed challenges for spectroscopic techniques, though some spectroscopic measurements have been made, primarily in the laboratory. (Radford et al., 1974) employed a more sensitive laser-assisted technique, laser magnetic resonance (LMR) spectroscopy in the laboratory to measure HO₂. Milhelcic et al. (1985, 2003) used Matrix Isolation Electron Spin Resonance (MIESP) where HO₂ are collected for a period of 30 minutes on a D₂O matrix at 77 K before detection. Both techniques directly

5 (MIESR), where HO₂ are collected for a period of 30 minutes on a D₂O matrix at 77 K before detection. Both techniques directly measure HO₂ but their applicability to atmospheric observations is limited. LMR may be impractical due to instrumentation needs while MIESR suffers from poor time resolution.

More recent methods such as peroxy radical chemical amplification (PERCA) (Cantrell and Stedman, 1982;Cantrell et al., 1984), chemical ionization mass spectrometry (CIMS) (Hanke et al., 2002;Edwards et al., 2003;Hornbrook et al., 2011), and

10 laser induced fluorescence (LIF) (Stevens et al., 1994;Brune et al., 1995) provide lower detection limits at high temporal resolution. However, these techniques do not measure HO_2 directly, requiring HO_2 to be titrated with NO, which introduces additional complexity.

The PERCA technique, for example, detects NO_2 produced from radical chain reactions of HO_2 with NO and OH with CO to produce multiple NO_2 molecules from each HO_2 present in the sample, effectively amplifying the signal. However,

addition of NO to a sample stream containing organic peroxy radicals results in additional HO₂ production, which precludes speciation of HO₂ from other peroxy radicals, though previous attempts to speciate the two have been made (Miyazaki et al., 2010).

Chemical ionization techniques such as ROx Chemical Conversion/CIMS (ROxMAS) and Peroxy radical CIMS (PerCIMS) also rely on the addition of NO to the sample stream, titrating HO₂ to OH which subsequently reacts with added SO₂

20 to produce H₂SO₄. The H₂SO₄ is then ionized by nitrate ions (NO₃⁻) at atmospheric pressure to produce a stable HSO₄⁻ ion for detection. PerCIMS suffers from positive artifacts from the contribution of the RO₂+NO reaction to the measured HO₂ concentration. Hornbrook et al. (2011) successfully speciated HO₂ and HO₂+RO₂ measurements by modulating the relative NO and O₂ concentrations in the reaction region, suppressing conversion of some peroxy radicals to ~15%. However, RO₂ contribution to HO₂ mixing ratios derived from unsaturated hydrocarbons such as isoprene is not suppressed by the oxygen dilution modulation scheme.

25 dilution modulation scheme.

The LIF technique, which converts HO_2 to OH for direct detection at 308 nm laser excitation, does not require additional chemical conversion steps, which allows for shorter reaction times. However, LIF instruments have previously been shown to also experience similar artifacts, with magnitudes dependent on the effective reaction time allowed after NO addition before detection and on the precursor of the RO₂ (Fuchs et al., 2011;Whalley et al., 2013).

30

Given the uncertainties associated with indirect methods of HO₂ measurement and the time resolution required for atmospheric measurements, especially airborne measurements, a direct measurement of HO₂ at fast integration times would benefit efforts aiming to measure and model HO₂ to understand atmospheric photochemistry. The exclusion of measurement artifacts would aid in evaluating the gap between measured and modeled HO₂ concentrations in forested regions, where HO₂ measured to modeled ratios are highly variable (Stone et al., 2012). In this work, we evaluated the potential of various chemical

ionization schemes and provide proof of concept for the Br⁻ associative ionization of HO₂ to form a Br⁻(HO₂) adduct as a direct way of measuring HO₂ using chemical ionization mass spectrometry. This technique provides selective, fast time resolution measurements of HO₂. Ambient measurements were conducted in Atlanta in June 2015 to demonstrate technique performance.

2. Instrument description

A High Resolution Time-of-Flight Chemical Ionization Mass Spectrometer (HR-ToF-CIMS, Aerodyne Research, Inc.) and a house-built quadrupole CIMS were used for laboratory characterizations of reagent ions for the measurement of HO₂. Ambient data were collected using the HR-ToF-CIMS exclusively. The High Resolution Time-of-Flight Chemical Ionization Mass Spectrometer (HR-ToF-CIMS, Aerodyne Research, Inc.) consists of an atmospheric pressure interface with five

- 5 differentially pumped stages, utilizing two scroll pumps and a multi-stage turbomolecular pump backed by a Vacuubrand MD1 diaphragm pump. The instrument design has been described in detail by Bertram et al. (2011). Fig. 1 shows a schematic of the HR-ToF-CIMS. HO₂ are measured by introducing 2 sLPM of sample into the ion-molecule reaction region through a 0.5 mm orifice and mixed with Br⁻ reagent produced by passing 10 sccm of a 0.2% CF₃Br/N₂ mixture carried by ~2 sLPM N₂ gas through a cylindrical 10 mCi Po-210 alpha radiation source. HO₂ present in the sample cluster with Br⁻ to form Br⁻(HO₂) adducts
- 10 which are transmitted by a series of ion optics and speciated by the time-of-flight spectrometer. The isotopic abundance of bromine is such that the adduct is detected at two nominal mass-to-charge ratios, m/z 112 and m/z 114 corresponding to the Br⁷⁹ and Br⁸¹ isotopes, respectively. The adducts have fractional mass-to-charge ratios of 111.9165 and 113.9144 Th. In order to demonstrate the generalizability of the technique to instruments with unit mass resolution, only the integrated peak data is used in this paper, though the high resolution capabilities were exploited to diagnose and address possible artifacts during the method
- development. The high resolution mass spectra are also used to unambiguously identify the BrHO₂⁻ adducts.

3. Laboratory characterizations and reagent ion selection

Prior to the selection of Br⁻ for our ionization scheme, a number of negative reagent ions were evaluated for their ability to detect HO₂. The reagent ions attempted included O₂⁻, SF₆⁻, Cl⁻, and l⁻. Because of their low electron affinities, O₂⁻ and SF₆⁻ were utilized in an attempt to produce the HO₂⁻ ion directly via charge exchange. However, HO₂⁻ was not observed in laboratory characterization experiments. It is likely that the HO₂⁻ ion was formed but was not detected due to its low electron affinity (Ramond et al., 2002), which results in high reactivity. The SF₆⁻ ionization did yield a cluster at mass-to-charge 52, which was assigned as HO₂F⁻ in the high resolution mass spectrum. However, the signal was not quantitatively reproducible and did not remain constant for a given HO₂ concentration. Additionally, the form of the cluster is more likely to be O₂⁻(HF) than F⁻(HO₂) (Seeley et al., 1996), which may compromise the selectivity of the measurement, as O₂⁻ ions are not uniquely formed from the ionization of HO₂.

Chloride and Iodide reagent ions were generated from HCl and CH_3I mixtures, respectively. The $CI^{\circ}(HO_2)$ cluster was not observed. The characterizations involving chloride reagent ions in the laboratory were conducted using the quadrupole CIMS. Unlike the other ions, which were evaluated the the HR-ToF-CIMS as well as the quadrupole CIMS, CI° was not revisited with the HR-ToF-CIMS instrument.

- 30 The Γ reagent ion, which has been used extensively to measure both organic and inorganic species (Huey et al., 1995;Slusher et al., 2004;Lee et al., 2014;Woodward-Massey et al., 2014;Brophy and Farmer, 2015;Faxon et al., 2015;Nah et al., 2016;Lee et al., 2016), was found to cluster with HO₂, appearing at mass-to-charge 160, consistent with observations by Veres et al. (2015). However, we observed that additions of NO₂ (Scott-Marrin, 100 ppm v/v N₂) to a clean N₂ gas matrix resulted in an increase of 1 cps per ppb NO₂ per 10⁶ cps Γ in the *m/z* 160 signal. A 20 ppb addition results in a 20 cps increase in the *m/z* 160
- signal, equivalent to ~4 ppt of HO₂. The addition of NO₂ showed in increase in a peak (m/z 159.992) not associated with HO₂ that we could not identify. The addition of NO₂ did not affect the high resolution Γ (HO₂) signal but is expected to be a significant artifact for instruments lacking sufficient resolving power. We suspect that some of the behavior exhibited in the I⁻ system may be due to the formation of methyl peroxy radicals (CH₃O₂), which result as a side product of the electron capture of CH₃I. To

attempt to resolve this issue, a CF_3I mixture was prepared and used as an I' source to avoid the production of CH_3O_2 . However, strong clustering of I' with CF_3I suppressed iodide ion abundance which prevented the formation of the $I'(HO_2)$ product ion.

Unlike the other reagent ions, the Br⁻ ionization scheme was found to be sensitive to HO₂, the measurements were reproducible, and there were no observed positive artifacts, making this an ideal scheme for measurements of HO₂. To evaluate potential positive artifacts as observed using iodide, NO₂ was added to N₂ gas sample and measured using the bromide reagent, but no increase in the BrHO₂⁻ (nominal *m/z* 112 and *m/z* 114) signals was observed. Parts per million mixing ratios of ozone were also introduced into the inlet in a clean N₂ matrix but did not cause any changes in the Br⁻(HO₂) cluster signal. While Br⁻ has the disadvantage of having a ~50% natural isotopic abundance with nominal *m/z* 79 and 81, HO₂ calibrations performed as described in Sect. 4 showed similar absolute sensitivities for the Γ(HO₂) and ⁷⁹Br⁻(HO₂) clusters using Γ and Br⁻ reagents, respectively. A synthesized mixture containing primarily ⁷⁹Br could nearly double the sensitivity at the *m/z* 112 cluster if necessary, giving Br⁻

10 synthesized mixture containing primarily ⁷⁹Br could nearly double the sensitivity at the m/z 112 cluster if necessary, giving Br an inherent advantage over I⁻ with respect to sensitivity. The ⁷⁹Br (HO₂) cluster was used preferentially over the ⁸¹Br (HO₂) cluster for ambient data because m/z 114 has a contribution from the isotope of a large m/z 113 CF₃COO⁻ signal which arises from impurities in PFA Teflon. Iodide ionization was attempted once more during ambient sampling, which will be discussed in Sect 5.2.

15 4. HO₂ Calibrations

 HO_2 calibrations were conducted by water photolysis at 184.9 nm using a mercury UV lamp as previously described by a number of studies e.g. (Tanner et al., 1997;Holland et al., 2003;Smith et al., 2006;Dusanter et al. 2008). Humidified and dry zero air gas streams from a pure air generator (AADCO 747-14) were mixed to vary the relative humidity of the gas. The gas stream was introduced through a square flow tube (15.6 x 15.6 x 520 mm) and exposed to UV radiation through a small slit. HO_2 concentrations were calculated using Eq. (1),

20

$$[HO_2] = q\phi\sigma[H_2O]\tau, \tag{1}$$

where q, ϕ , σ , and τ represent the quantum yield, UV lamp photon flux at 184.9 nm, water absorption cross-section, and irradiation time, respectively. The quantum yield was assumed to be unity and a value of 7.22 x 10⁻²⁰ cm² was used for the water

- absorption cross section (Creasey, 2000). The lamp photon flux was measured using a Hamamatsu Phototube (Hamamatsu Photonics), and found to be 2.6 x 10^{13} photons cm⁻² s⁻¹. A bandpass filter (HORIBA Scientific) was used to selectively transmit at 185 nm. The dew point of the gas was measured using a LICOR LI-840A CO₂/H₂O gas analyzer. The irradiation time was calculated based on the flow velocity which was measured using a Dwyer pitot tube and magnehelic. The time after irradiation before introduction into the instrument was minimized (t~60 ms) to avoid additional HO₂ generation from reaction of OH with
- 30 trace CO present in the N₂ gas. It was calculated that less than 8% of the OH formed would react with CO to produce additional HO_2 assuming a CO concentration of 500 ppb. The HO_2 concentrations were kept low to calibrate for atmospherically relevant ranges and avoid non-linearity in the calibration curve due to depletion of HO_2 through HO_2 radical-radical recombination. At the HO_2 mixing ratios employed, less than 1% of HO_2 are estimated to be lost to recombination.
- Fig. 2 shows the HO₂ calibration curve for m/z 112. The curve is linear with a slope of 4.95 ± 1.00 which represents the sensitivity in Hz/ppt for a ⁷⁹Br⁻ ion count of 10⁶ cps. An intercept of 27±5 is observed for the calibration which is not explained by errors in any of the parameters used to calculate the expected HO₂ concentrations in Eqn. 1. Instead, there appears to be a constant HO₂ photolytic source independent of water photolysis. The unidentified source requires the presence of water vapor but does not scale with the absolute water vapor mixing ratio. The magnitude of the HO₂ formation from this unknown source

scales linearly with the UV lamp flux. The intercept does not affect the sensitivity and is not used to calculate the HO₂ mixing ratio. The uncertainty in the sensitivity is derived from the combined uncertainties of the parameters used in Eq. 1, resulting in a 1σ uncertainty of 20%.

5. Ambient Measurements

- 5 To demonstrate the applicability of the Br⁻ ionization scheme to ambient HO₂ measurements, a field study was conducted in June, 2015 (6/9/2015-6/25/2015) in Atlanta at an urban background site located on the roof (30-40 m above ground) of the Ford Environmental Science & Technology building on the Georgia Tech campus, which has been used for previous ambient studies (Hennigan et al., 2008;Xu et al., 2015a;Xu et al., 2015b). The site is about 840 m west of Interstate-75/85 and is therefore affected by traffic emissions. The instrument was located outside in an enclosure, allowing a short inlet of
- 10 approximately five inches to avoid HO₂ losses on the walls of the sample tubing. Data was collected at a 1 Hz frequency and averaged to 1 minute data points. A solenoid valve was used to perform periodic additions of 4 ppm NO (Scott-Marrin) into the sample stream every 10 minutes on a 10% duty cycle to obtain the measurement background. The signal response to the NO addition is immediate and very short periods of time (<20 s) are required, though longer baseline periods were used here for ease of data analysis. The m/z 112 signal was normalized to a ⁷⁹Br⁻ count of 10⁶ cps to account for temporal changes in reagent ion
- 15 abundance.

Various co-located instruments were deployed for simultaneous measurements of O_3 , NO, NO₂, and HNO₄. NO concentrations were measured using a Teledyne 200EU chemiluminescence monitor while NO₂ was measured by a Cavity Attenuated Phase Shift NO₂ monitor (Aerodyne Research, Inc.). Ozone was measured using a Teledyne Model T400 UV absorption analyzer. Pernitric acid (HNO₄), formed from the reaction of HO₂ with NO₂ was also monitored using a house-built

20 Quadrupole Chemical Ionization Mass Spectrometer (Q-CIMS) with an Iodide-adduct ionization scheme and observed at m/z206. A similar configuration of the instrument has been described previously by Slusher et al. (2004). Previous measurements of HNO₄ using I have been conducted by Veres et al. (2015). Meteorological data, including temperature, humidity, and solar UV radiation were recorded using a Vantage Pro2 weather station.

5.1 Bromide-CIMS measurements of HO₂

- Fig. 3 shows the diurnal profile of HO₂, as well as the diurnals of the UV radiation intensity, NO and O₃ concentrations. The difference in the time between peak actinic flux and peak HO₂ concentration is due to the suppression of HO₂ by the presence of NO from morning-time traffic emissions. The HO₂ rises once the NO concentration is sufficiently low and peaks between 1 and 3 p.m. with a mixing ratio of ~7 ppt, comparable to previous studies in other urban areas (Emmerson et al., 2005;Kanaya et al., 2007;Dusanter et al., 2009). The 3σ limit of detection was calculated to be 0.7 ppt for a 1 minute integration
- 30 time based on laboratory calibrations and baselines observed during ambient sampling, which is sufficiently low for atmospherically important HO₂ concentrations. The slow decay of HO₂ may partially be explained by HO₂ production from oxidation of biogenic volatile organic compounds (BVOCs), which are abundant in the Southeast United States (Geron et al., 2000;Guenther et al., 2006), as well as a decrease in boundary layer height However, additional measurements would be required to constrain sources and sinks.
- 35 HNO_4 and NO_2 measurements were used to calculate an inferred HO_2 concentration for comparison with the measured HO_2 concentrations. The HNO_4 and HO_2 are assumed to be in thermal equilibrium for the calculation. The assumption is expected to be valid in Atlanta due to significant NO_2 concentrations (6-29 ppb). Their respective diurnal profiles are shown in

Fig. 4. The measurements agree well qualitatively. However, during the measurement period, the HO₂ mixing ratio calculated based on HNO₄ measurements was consistently higher than the measured HO₂ by a factor of 5. This is likely due to a combination of factors, including a positive bias in the HNO₄ measurement and uncertainties associated with the HO₂ sensitivity during ambient sampling. The sensitivity of the direct HO₂ measurement was determined in the laboratory and online calibrations were not conducted. It is possible that the sensitivity during ambient measurements was lower due to specific

- 5 calibrations were not conducted. It is possible that the sensitivity during ambient measurements was lower due to specific sampling conditions. In particular, the instrument experienced temperature fluctuations between 20 and 40°C. We performed laboratory experiments to evaluate the effect of temperature on instrument sensitivity and found a 20% decrease in sensitivity at 40°C as compared to the sensitivity at 20°C. Furthermore, environmental conditions resulted in corrosion of the critical orifice on the HR-ToF-CIMS, which lowered the sample flow by 35%. The sensitivity was not corrected for the lower sample flow as
- 10 the time at which the sample flow decreased was not known with certainty. A detailed comparison of HO_2 inferred from HNO_4 and HO_2 directly measured by the Br⁻ ionization warrants future investigation, considering both methods are currently under development. Nevertheless, the good qualitative agreement observed between both methods, as well as the consistency of the measured HO_2 diurnal profile with expectation demonstrates that Br⁻ chemical ionization is a promising technique for ambient HO_2 measurements.
- A final but important observation during our ambient measurements was that the measurement background differed between different backgrounding methods. We compared the measurement backgrounds obtained using two backgrounding methods: NO chemical titration by standard NO additions, and physical scrubbing using a metal wool scrubber. The NO titration of HO₂ resulted in lower background signals than physical scrubbing. Furthermore, additions of NO to the sample air after physical scrubbing further decreased the HO₂ signal. This suggests that there is internal HO₂ generation within the instrument. Laboratory characterizations were conducted to explore the discrepancy. In the laboratory, adding NO to a clean N₂ sample
- Eaboratory characterizations were conducted to explore the discrepancy. In the laboratory, adding NO to a clean N_2 sample matrix also decreased the observed HO₂ background signal. The differences in HO₂ backgrounds observed between the different backgrounding methods and NO additions to N_2 gas were similar, representing ~4 ppt of HO₂ generated inside the instrument. The HO₂ is likely produced from ion-molecule reactions of trace gases in the N_2 used for ion generation. The measured HO₂ profiles in Fig. 3 and Fig. 4 have already been corrected by subtraction of internal HO₂ generation.

25 5.2 Iodide-CIMS measurements of HO₂

30

Despite artifacts observed in the measurements of laboratory-generated HO₂, iodide ionization measurements were conducted during a short ambient sampling period (07/25/2015 6:00 P.M. to 7/27/2015 10:00 A.M.) to assess its viability in a real air matrix for the measurement of HO₂. We observed that the measured Γ (HO₂) signals were not consistent with the expected behavior of HO₂. The time series did not show a clear diurnal, nor was the signal effectively suppressed by NO additions. During noon-time, NO additions had no effect on m/z 160, and caused it to increase during other times of the day. The high resolution

- capability of the HR-ToF-CIMS allowed for the peak assignment of $\Gamma(HO_2)$ with high accuracy but the time-series of the high resolution peak displayed a similar behavior to that of the low resolution data. Additionally, a peak (m/z 159.9989 Th) which may pertain to the NO₂ related artifact observed during earlier laboratory characterizations is present (Fig. 5). Because the sampling period was short, the possibility of using iodide for HO₂ measurements may warrant further exploration. However, our
- 35 laboratory and ambient measurements suggest that for iodide to be viable, high resolution capability will be necessary for accurate measurements due to artifacts caused by the presence of NO₂. This is not the case for Br⁻. Fig. 5 shows the mass spectra of Br⁻ and Γ at the mass-to-charge ratios where the HO₂ clusters are observed. The Br⁻ spectrum shows that the BrHO₂⁻ cluster is the dominant species at m/z 112. The minor peak observed is always present and does not vary significantly over the course of

the day. Furthermore, the peak does not respond to NO additions, making NO backgrounds effective at eliminating any contribution to the signal from this peak. Thus, the measurement of HO_2 with Br does not require high resolution capability.

6. Conclusions and Future Work

HO₂ are important contributors to photo-chemical schemes in the atmosphere. In this work, we investigated the
feasibility of a direct chemical ionization measurement of HO₂. We evaluated a number of negative reagent ions (O₂⁻, SF₆⁻, Cl⁻, Γ
, Br⁻) using a HR-ToF-CIMS and found that detection of HO₂ using charge exchange ionization will not be feasible in the real atmosphere. However, associative ionization of HO₂ via clustering was found to be a promising mechanism for the direct measurement of atmospheric HO₂. Among the reagent ions evaluated, Br⁻ was found to be the best candidate for the measurement of HO₂, providing improved selectivity over I⁻. The HO₂ sensitivities as measured at *m*/*z* 160 and *m*/*z* 112 using iodide and bromide, respectively, were found to be similar, giving Br⁻ an inherent advantage in sensitivity, as an isotopically pure CF₃⁷⁹Br mixture should nearly double the sensitivity at *m*/*z* 112. Using Br⁻ also allows for the measurement of HO₂ at a lower *m*/*z* which decreases the likelihood of measurement interferences.

Ambient measurements were conducted in Atlanta in June 2015 to demonstrate the performance and capability of the instrument. The sensitivity using Br⁻ (4.95 \pm 1.00 Hz/ppt per 10^{6 79}Br ion counts) was sufficient for ground-based measurements as the observed baselines were relatively low. Furthermore, the absolute sensitivity for HO₂ may also be significantly improved by using a radioactive source with higher activity, provided that measures are taken to suppress the increased background due to internal HO₂ generation. The measured HO₂ diurnal behaves in a manner consistent with the associated NO_x and HNO₄ measurements, though there exist no previous measurements for HO₂ in Atlanta available for a more quantitative comparison. Future work will focus on optimizing the instrument sensitivity to HO₂, conducting instrument intercomparisons, and further

20 exploring Br ionization for the measurement of other atmospherically important species.

Acknowledgements

This work was supported by National Science Foundation grant 1455588. The HR-ToF-CIMS was purchased with NSF Major Research Instrumentation (MRI) grant 1428738. J. Sanchez acknowledges support by a NASA Earth and Space
25 Science Fellowship (NESSF) and an Alfred P. Sloan Minority Ph.D. (MPHD) Scholarship. The authors would like to thank Wing Y. Tuet for helpful comments.

References

30

Alam, M. S., Rickard, A. R., Camredon, M., Wyche, K. P., Carr, T., Hornsby, K. E., Monks, P. S., and Bloss, W. J.: Radical Product Yields from the Ozonolysis of Short Chain Alkenes under Atmospheric Boundary Layer Conditions, J Phys Chem A, 117, 12468-12483, 10.1021/jp408745h, 2013.

Bertram, T. H., Kimmel, J. R., Crisp, T. A., Ryder, O. S., Yatavelli, R. L. N., Thornton, J. A., Cubison, M. J., Gonin, M., and Worsnop, D. R.: A field-deployable, chemical ionization time-of-flight mass spectrometer, Atmos. Meas. Tech., 4, 1471-1479, 10.5194/amt-4-1471-2011, 2011.

Brophy, P., and Farmer, D. K.: A switchable reagent ion high resolution time-of-flight chemical ionization mass spectrometer for real-time measurement of gas phase oxidized species: characterization from the 2013 southern oxidant and aerosol study, Atmos.

35 real-time measurement of gas phase oxidized species: characterization from the 2013 southern oxidant and aer Meas. Tech., 8, 2945-2959, 10.5194/amt-8-2945-2015, 2015.

5

20

30

40

Brune, W. H., Stevens, P. S., and Mather, J. H.: MEASURING OH AND HO2 IN THE TROPOSPHERE BY LASER-INDUCED FLUORESCENCE AT LOW-PRESSURE, Journal of the Atmospheric Sciences, 52, 3328-3336, 10.1175/1520-0469(1995)052<3328:moahit>2.0.co;2, 1995.

Cantrell, C. A., and Stedman, D. H.: A possible technique for the measurement of atmospheric peroxy radicals, Geophysical Research Letters, 9, 846-849, 10.1029/GL009i008p00846, 1982.

Cantrell, C. A., Stedman, D. H., and Wendel, G. J.: Measurement of Atmospheric Peroxy-Radicals by Chemical Amplification, Anal Chem, 56, 1496-1502, 10.1021/Ac00272a065, 1984.

Cooke, M. C., Utembe, S. R., Carbajo, P. G., Archibald, A. T., Orr-Ewing, A. J., Jenkin, M. E., Derwent, R. G., Lary, D. J., and Shallcross, D. E.: Impacts of formaldehyde photolysis rates on tropospheric chemistry, Atmospheric Science Letters, 11, 33-38, 10 1002/acl 251, 2010

10 10.1002/asl.251, 2010.

Docherty, K. S., Wu, W., Lim, Y. B., and Ziemann, P. J.: Contributions of Organic Peroxides to Secondary Aerosol Formed from Reactions of Monoterpenes with O3, Environ Sci Technol, 39, 4049-4059, 10.1021/es050228s, 2005.

Dusanter, S., Vimal, D., and Stevens, P. S.: Technical note: Measuring tropospheric OH and HO2 by laser-induced fluorescence at low pressure. A comparison of calibration techniques, Atmos. Chem. Phys., 8, 321-340, 10.5194/acp-8-321-2008, 2008.

15 Dusanter, S., Vimal, D., Stevens, P. S., Volkamer, R., and Molina, L. T.: Measurements of OH and HO2 concentrations during the MCMA-2006 field campaign – Part 1: Deployment of the Indiana University laser-induced fluorescence instrument, Atmos. Chem. Phys., 9, 1665-1685, 10.5194/acp-9-1665-2009, 2009.

Edwards, G. D., Cantrell, C. A., Stephens, S., Hill, B., Goyea, O., Shetter, R. E., Mauldin, R. L., Kosciuch, E., Tanner, D. J., and Eisele, F. L.: Chemical ionization mass spectrometer instrument for the measurement of tropospheric HO2 and RO2, Anal Chem, 75, 5317-5327, 10.1021/Ac034402b, 2003.

Emmerson, K. M., Carslaw, N., Carpenter, L. J., Heard, D. E., Lee, J. D., and Pilling, M. J.: Urban Atmospheric Chemistry During the PUMA Campaign 1: Comparison of Modelled OH and HO2 Concentrations with Measurements, J Atmos Chem, 52, 143-164, 10.1007/s10874-005-1322-3, 2005.

Faxon, C. B., Bean, J. K., and Ruiz, L. H.: Inland Concentrations of Cl-2 and ClNO2 in Southeast Texas Suggest Chlorine

25 Chemistry Significantly Contributes to Atmospheric Reactivity, Atmosphere-Basel, 6, 1487-1506, 10.3390/atmos6101487, 2015. Fuchs, H., Bohn, B., Hofzumahaus, A., Holland, F., Lu, K. D., Nehr, S., Rohrer, F., and Wahner, A.: Detection of HO2 by laserinduced fluorescence: calibration and interferences from RO2 radicals, Atmos. Meas. Tech., 4, 1209-1225, 10.5194/amt-4-1209-2011, 2011.

Geron, C., Rasmussen, R., Arnts, R. R., and Guenther, A.: A review and synthesis of monoterpene speciation from forests in the United States, Atmospheric Environment, 34, 1761-1781, Doi 10.1016/S1352-2310(99)00364-7, 2000.

Geyer, A., Bachmann, K., Hofzumahaus, A., Holland, F., Konrad, S., Klupfel, T., Patz, H. W., Perner, D., Mihelcic, D., Schafer, H. J., Volz-Thomas, A., and Platt, U.: Nighttime formation of peroxy and hydroxyl radicals during the BERLIOZ campaign: Observations and modeling studies, J Geophys Res-Atmos, 108, 10.1029/2001jd000656, 2003.

Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene
emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos Chem Phys, 6, 3181-3210, 2006.

Hanke, M., Uecker, J., Reiner, T., and Arnold, F.: Atmospheric peroxy radicals: ROXMAS, a new mass-spectrometric methodology for speciated measurements of HO2 and Sigma RO2 and first results, Int J Mass Spectrom, 213, 91-99, 10.1016/S1387-3806(01)00548-6, 2002.

Heard, D. E., and Pilling, M. J.: Measurement of OH and HO2 in the Troposphere, Chem Rev, 103, 5163-5198, 10.1021/cr020522s, 2003.

5

10

40

Hennigan, C. J., Bergin, M. H., Dibb, J. E., and Weber, R. J.: Enhanced secondary organic aerosol formation due to water uptake by fine particles, Geophysical Research Letters, 35, 10.1029/2008GL035046, 2008.

Holland, F., Hofzumahaus, A., Schäfer, J., Kraus, A., and Pätz, H.-W.: Measurements of OH and HO2 radical concentrations and photolysis frequencies during BERLIOZ, Journal of Geophysical Research: Atmospheres, 108, PHO 2-1-PHO 2-23, 10.1029/2001JD001393, 2003.

Hornbrook, R. S., Crawford, J. H., Edwards, G. D., Goyea, O., Mauldin, R. L., Olson, J. S., and Cantrell, C. A.: Measurements of tropospheric HO2 and RO2 by oxygen dilution modulation and chemical ionization mass spectrometry, Atmos Meas Tech, 4, 735-756, 10.5194/amt-4-735-2011, 2011.

Huey, L. G., Hanson, D. R., and Howard, C. J.: Reactions of SF6- and I- with Atmospheric Trace Gases, The Journal of Physical Chemistry, 99, 5001-5008, 10.1021/j100014a021, 1995.

Kanaya, Y., Cao, R., Akimoto, H., Fukuda, M., Komazaki, Y., Yokouchi, Y., Koike, M., Tanimoto, H., Takegawa, N., and Kondo, Y.: Urban photochemistry in central Tokyo: 1. Observed and modeled OH and HO2 radical concentrations during the winter and summer of 2004, Journal of Geophysical Research: Atmospheres, 112, 10.1029/2007JD008670, 2007.

 Lee, B. H., Lopez-Hilfiker, F. D., Mohr, C., Kurten, T., Worsnop, D. R., and Thornton, J. A.: An Iodide-Adduct High-Resolution
 Time-of-Flight Chemical-Ionization Mass Spectrometer: Application to Atmospheric Inorganic and Organic Compounds, Environ Sci Technol, 48, 6309-6317, 10.1021/es500362a, 2014.

Lee, B. H., Mohr, C., Lopez-Hilfiker, F. D., Lutz, A., Hallquist, M., Lee, L., Romer, P., Cohen, R. C., Iyer, S., Kurtén, T., Hu, W., Day, D. A., Campuzano-Jost, P., Jimenez, J. L., Xu, L., Ng, N. L., Guo, H., Weber, R. J., Wild, R. J., Brown, S. S., Koss, A., de Gouw, J., Olson, K., Goldstein, A. H., Seco, R., Kim, S., McAvey, K., Shepson, P. B., Starn, T., Baumann, K., Edgerton, E.

20 S., Liu, J., Shilling, J. E., Miller, D. O., Brune, W., Schobesberger, S., D'Ambro, E. L., and Thornton, J. A.: Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets, Proceedings of the National Academy of Sciences, 113, 1516-1521, 10.1073/pnas.1508108113, 2016. Miyazaki, K., Parker, A. E., Fittschen, C., Monks, P. S., and Kajii, Y.: A new technique for the selective measurement of atmospheric peroxy radical concentrations of HO2 and RO2 using a denuding method, Atmos. Meas. Tech., 3, 1547-1554,

10.5194/amt-3-1547-2010, 2010.
 Nah, T., Sanchez, J., Boyd, C. M., and Ng, N. L.: Photochemical Aging of α-pinene and β-pinene Secondary Organic Aerosol formed from Nitrate Radical Oxidation, Environ Sci Technol, 50, 222-231, 10.1021/acs.est.5b04594, 2016.
 Radford, H. E., Evenson, K. M., and Howard, C. J.: HO2 detected by laser magnetic resonance, The Journal of Chemical Physics, 60, 3178-3183, doi:http://dx.doi.org/10.1063/1.1681503, 1974.

Ramond, T. M., Blanksby, S. J., Kato, S., Bierbaum, V. M., Davico, G. E., Schwartz, R. L., Lineberger, W. C., and Ellison, G. B.: Heat of Formation of the Hydroperoxyl Radical HOO Via Negative Ion Studies[†], The Journal of Physical Chemistry A, 106, 9641-9647, 10.1021/jp014614h, 2002.

Seeley, J. V., Meads, R. F., Elrod, M. J., and Molina, M. J.: Temperature and Pressure Dependence of the Rate Constant for the HO2 + NO Reaction, The Journal of Physical Chemistry, 100, 4026-4031, 10.1021/jp952553f, 1996.

35 Slusher, D. L., Huey, L. G., Tanner, D. J., Flocke, F. M., and Roberts, J. M.: A thermal dissociation-chemical ionization mass spectrometry (TD-CIMS) technique for the simultaneous measurement of peroxyacyl nitrates and dinitrogen pentoxide, Journal of Geophysical Research: Atmospheres, 109, D19315, 10.1029/2004JD004670, 2004.Smith, S. C., Lee, J. D., Bloss, W. J., Johnson, G. P., Ingham, T., and Heard, D. E.: Concentrations of OH and HO2 radicals

during NAMBLEX: measurements and steady state analysis, Atmos. Chem. Phys., 6, 1435-1453, 10.5194/acp-6-1435-2006, 2006.

Stevens, P. S., Mather, J. H., and Brune, W. H.: MEASUREMENT OF TROPOSPHERIC OH AND HO2 BY LASER-INDUCED FLUORESCENCE AT LOW-PRESSURE, J Geophys Res-Atmos, 99, 3543-3557, 10.1029/93jd03342, 1994. Stone, D., Whalley, L. K., and Heard, D. E.: Tropospheric OH and HO2 radicals: field measurements and model comparisons, Chem Soc Rev, 41, 6348-6404, 10.1039/C2CS35140D, 2012.

- 5 Stone, D., Evans, M. J., Walker, H., Ingham, T., Vaughan, S., Ouyang, B., Kennedy, O. J., McLeod, M. W., Jones, R. L., Hopkins, J., Punjabi, S., Lidster, R., Hamilton, J. F., Lee, J. D., Lewis, A. C., Carpenter, L. J., Forster, G., Oram, D. E., Reeves, C. E., Bauguitte, S., Morgan, W., Coe, H., Aruffo, E., Dari-Salisburgo, C., Giammaria, F., Di Carlo, P., and Heard, D. E.: Radical chemistry at night: comparisons between observed and modelled HOx, NO3 and N2O5 during the RONOCO project, Atmos Chem Phys, 14, 1299-1321, 10.5194/acp-14-1299-2014, 2014.
- 10 Tanner, D. J., Jefferson, A., and Eisele, F. L.: Selected ion chemical ionization mass spectrometric measurement of OH, Journal of Geophysical Research: Atmospheres, 102, 6415-6425, 10.1029/96JD03919, 1997. Veres, P. R., Roberts, J. M., Wild, R. J., Edwards, P. M., Brown, S. S., Bates, T. S., Quinn, P. K., Johnson, J. E., Zamora, R. J., and de Gouw, J.: Peroxynitric acid (HO2NO2) measurements during the UBWOS 2013 and 2014 studies using iodide ion chemical ionization mass spectrometry, Atmos. Chem. Phys., 15, 8101-8114, 10.5194/acp-15-8101-2015, 2015.
- Volkamer, R., Sheehy, P., Molina, L. T., and Molina, M. J.: Oxidative capacity of the Mexico City atmosphere Part 1: A radical source perspective, Atmos Chem Phys, 10, 6969-6991, 10.5194/acp-10-6969-2010, 2010.
 Whalley, L. K., Blitz, M. A., Desservettaz, M., Seakins, P. W., and Heard, D. E.: Reporting the sensitivity of laser-induced fluorescence instruments used for HO2 detection to an interference from RO2 radicals and introducing a novel approach that enables HO2 and certain RO2 types to be selectively measured, Atmos. Meas. Tech., 6, 3425-3440, 10.5194/amt-6-3425-2013,
- 20 2013.

Woodward-Massey, R., Taha, Y. M., Moussa, S. G., and Osthoff, H. D.: Comparison of negative-ion proton-transfer with iodide ion chemical ionization mass spectrometry for quantification of isocyanic acid in ambient air, Atmospheric Environment, 98, 693-703, 10.1016/j.atmosenv.2014.09.014, 2014.

Xu, L., Guo, H., Boyd, C. M., Klein, M., Bougiatioti, A., Cerully, K. M., Hite, J. R., Isaacman-VanWertz, G., Kreisberg, N. M.,

25 Knote, C., Olson, K., Koss, A., Goldstein, A. H., Hering, S. V., de Gouw, J., Baumann, K., Lee, S.-H., Nenes, A., Weber, R. J., and Ng, N. L.: Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States, Proceedings of the National Academy of Sciences, 112, 37-42, 10.1073/pnas.1417609112, 2015a. Xu, L., Suresh, S., Guo, H., Weber, R. J., and Ng, N. L.: Aerosol characterization over the southeastern United States using high-

resolution aerosol mass spectrometry: spatial and seasonal variation of aerosol composition and sources with a focus on organic
 nitrates, Atmos. Chem. Phys., 15, 7307-7336, 10.5194/acp-15-7307-2015, 2015b.

Figure 1: Schematic of the High Resolution Time-of-Flight Chemical Ionization Mass Spectrometer. Sample air enters the flow tube through a 0.5 mm orifice where it is ionized. Collision dissociation occurs in the small segmented quadrupole. Products ions are transferred through the big segmented quadrupole and a series of ion lenses to the time-of-flight analyzer.

Figure 2: HO₂ calibration curve for the ⁷⁹BrHO₂ cluster as observed at nominal m/z 112. The slope represents the sensitivity in Hz/ppt. HO₂ mixing ratios are calculated using Eqn. 1. The error associated with the sensitivity is 20% which arises from the combined uncertainty of the calibration parameters (Eqn. 1).

Figure 3: Diurnal profiles of HO₂, NO, O₃ and UV flux in Atlanta, June 15th – June 18th, 2015.

Figure 4: Comparison of HO₂ diurnal profiles (6/15/2015 to 6/18/2015) for measured HO₂ and HO₂ calculated assuming an equilibrium between HO₂ and HNO₄. The measured HO₂ signal has been corrected by subtracting the contribution from internal generation of HO₂.

Figure 5: High resolution mass spectra of nominal m/z 112 for the Br^{-} ionization of HO₂ (top) and m/z 160 for the I^{-} ionization of HO₂ (bottom).